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1. Executive Summary: The Big Picture 
Identifying defect patterns on semiconductor wafer maps (examples shown in Figure 1) is 

crucial for quickly finding the root causes of production issues and improving yield. This 

project aimed to build an Artificial Intelligence (AI) model capable of automatically 

classifying various defect patterns, including complex mixed types. 

 

What We Did: We utilized the MixedWM38 dataset, containing over 38,000 wafer maps. 

We developed an automated pipeline involving data loading, preprocessing, model training 

using a Convolutional Neural Network (CNN, architecture shown in Figure 2), and rigorous 

evaluation on unseen test data. 

 

What Worked Extremely Well: The trained AI model demonstrated outstanding 

performance. It achieved very high accuracy (Overall Test AUC: 0.998, see Figure 8) in 

classifying defect patterns, correctly identifying most single and mixed defects (Figures 6 & 

7 show specific examples). The model generalized well from the training data (Figure 3) and 

its per-class metrics (Figure 4) significantly outperform a hypothetical poor model (Figure 

5). 

 

Key Takeaway: AI, specifically CNNs, can be highly effective for automating the complex 

task of wafer map defect pattern recognition. The curated dataset proved suitable for 

training a robust classification model. 

 

Manufacturing Potential: This validated model can significantly accelerate root cause 

analysis (Figure 9), leading to faster process corrections, improved yield, reduced waste, 

and optimized engineering resource allocation. The overall success is visually represented 

in Figure 10. 

Recommendation: Proceed with deployment planning, error analysis, and exploring model 

explainability. 

  



2. Project Goal: Faster Troubleshooting, Higher Yield 
In semiconductor manufacturing, wafer maps visualize the pass/fail status of individual 

dies after electrical testing. The spatial patterns of these failures often indicate specific 

problems in the manufacturing process. Manual interpretation, especially for mixed defects, 

can be slow and subjective, hindering rapid Root Cause Analysis (RCA). 

 

The primary goal of this project was to develop and evaluate an AI-based system to 

automatically and accurately classify wafer map defect patterns to accelerate RCA and 

ultimately improve manufacturing yield and efficiency. 

3. The Data: MixedWM38 Dataset Examples 
We used the publicly available MixedWM38 dataset, containing over 38,000 wafer map 

images (52x52 pixels) derived from electrical test data. Figure 1 provides visual examples of 

the typical raw wafer map data used as input to the model. 

 

Each map is labeled according to the presence or absence of 8 basic defect types (Center, 

Donut, Edge_Loc, Edge_Ring, Loc, Near_Full, Scratch, Random), allowing for single and 

mixed-defect scenarios. The dataset originates from a real manufacturing plant and was 

augmented using Generative Adversarial Networks (GANs) to improve balance, although 

some class imbalance persists. 

 

Data Handling Note: During initial exploration, an undocumented pixel value '3' was found. 

We standardized the data by clipping this value to '2' (representing a failed die) during 

preprocessing. 

 

Figure 1: Examples of raw input Wafer Maps from the dataset. 



 

4. Our Approach: Building and Training the AI Classifier 
We implemented a structured machine learning workflow:  

 

Step 1: Data Preparation (Script 1): Loaded 

the dataset, performed exploratory analysis, 

handled the data inconsistency (clipping value 

'3'), scaled pixel values [0, 0.5, 1.0], added 

necessary dimensions for the CNN, split data 

into Training (70%), Validation (15%), and 

Test (15%) sets using stratification, and saved 

the processed splits. 

 

Step 2: Model Definition & Training (Script 2): 

A Convolutional Neural Network (CNN) was 

chosen. The specific architecture is depicted in 

Figure 2. The model was compiled using 

binary crossentropy loss and AUC as the key 

metric. Training was performed on the 

Training set, with performance monitored on 

the Validation set. Callbacks 

(ModelCheckpoint, EarlyStopping) ensured we 

saved the best performing model and 

prevented significant overfitting, as shown by 

the learning curves in Figure 3. 

 

Step 3: Model Evaluation (Script 3 & Utilities): 

The best model saved during training was 

rigorously evaluated on the completely unseen 

Test set.  

 

  Figure 2: Architecture of the baseline Convolutional Neural Network (CNN). 

 



 

Figure 3: Model Training & Validation Performance Curves (Loss & AUC vs. Epochs). 

 

5. Results: Validating Model Performance 
Evaluation on the unseen test data confirmed the baseline CNN model's high accuracy and 

reliability: 

 

    • Quantitative Metrics: The model achieved a low Test Loss of 0.0225 and an excellent 

overall Test AUC of 0.9980. 

 

    • Per-Class Performance: The heatmap in Figure 4 visually summarizes the detailed 

classification metrics (Precision, Recall, F1-Score) for each defect type on the Test set. 

Performance is exceptionally high (> 0.97) for almost all classes. The contrast with a 

simulated poorly performing model (Figure 5) starkly highlights the success achieved. 

  



 

 

Figure 4: Heatmap of Classification 

Metrics on Test Set for the Trained  Model. 

 Figure 5: Heatmap of Simulated Poor 

Performance Metrics (for comparison). 

 

 

Figure 6: Prediction Example: Raw map vs. Model output for Test Index 15. 

 

 

Figure 7: Prediction Example: Raw map vs. Model output for Test Index 1400. 



 

 

Figure 8: Test Set ROC Curves & AUC Scores. 

The Story This Plot Tells: 

        The Goal: The ideal spot on this chart is the top-left corner (high True Positives, low 

False Positives). A perfect model would have a curve going straight up and then straight 

across, right in that corner. 

        Random Guessing: The dashed diagonal line represents pure random chance – a model 

no better than flipping a coin. 

        Our Model's Success: Notice how almost all the colored curves for our model are 

"hugging" that top-left corner. This visually demonstrates that the model is extremely good 

at identifying defects correctly *without* raising many false alarms. It's performing vastly 

better than random chance. 

        The AUC Score: The "AUC" (Area Under the Curve) value listed for each defect (and the 

averages) quantifies this performance. An AUC of 1.0 is perfect, while 0.5 is random 

guessing. Our model achieves AUC values very close to 1.0 (average ~0.998), confirming its 

excellent ability to reliably separate defective from non-defective patterns for nearly all 

types, even on data it hasn't seen before. This builds strong confidence in its potential for 

real-world manufacturing use. 



 

6. Manufacturing Impact & Workflow Enhancement 
This validated AI model offers significant practical benefits for semiconductor 

manufacturing by streamlining the defect analysis process, as illustrated in Figure 9. Key 

advantages include: Automated Classification, Accelerated RCA, Improved Yield & Reduced 

Waste, Enhanced Process Monitoring, Objective Data Logging, and Optimized Engineering 

Resources. 

 

Figure 9: Comparison of Defect Analysis Workflow: Traditional vs. AI-Enhanced. 

 

  



7. Recommendations & Future Work 
The outstanding performance and clear potential impact (summarized visually in Figure 10) 

suggest the following next steps: 

 

    1. Deployment Planning & Integration: Prioritize developing a robust pipeline to integrate 

the model (`baseline_cnn_best.keras`) into the manufacturing environment (MES, databases, 

dashboards). 

    2. Focused Error Analysis: Investigate the few misclassifications (especially 'Near_Full' 

misses) to understand edge cases. 

    3. Production Monitoring: Implement performance monitoring post-deployment to detect 

concept drift and plan for retraining. 

    4. Explainable AI (XAI): Employ techniques like Grad-CAM to visualize *why* the model 

makes specific predictions, building trust and providing deeper insights. 

    5. Threshold Tuning (Optional): Adjust prediction thresholds per class if specific 

precision/recall trade-offs are critical. 

 

Figure 10: Visual summary highlighting the project's successful outcome. 

 

8. Conclusion 
This project successfully developed and validated a highly accurate AI model for classifying 

complex defect patterns on semiconductor wafer maps. The CNN demonstrated excellent 

generalization, proving its potential as a valuable tool to accelerate root cause analysis, 

enhance process control, and improve manufacturing outcomes. The path is clear for 

leveraging this AI capability in production. 


